Bethe ansatz of the open spin-sXXZ chain with nondiagonal boundary terms
نویسندگان
چکیده
منابع مشابه
Bethe Ansatz solution of the open XX spin chain with nondiagonal boundary terms
We consider the integrable open XX quantum spin chain with nondiagonal boundary terms. We derive an exact inversion identity, using which we obtain the eigenvalues of the transfer matrix and the Bethe Ansatz equations. For generic values of the boundary parameters, the Bethe Ansatz solution is formulated in terms of Jacobian elliptic functions.
متن کاملBethe Ansatz solution of the open XXZ chain with nondiagonal boundary terms
We propose a set of conventional Bethe Ansatz equations and a corresponding expression for the eigenvalues of the transfer matrix for the open spin2 XXZ quantum spin chain with nondiagonal boundary terms, provided that the boundary parameters obey a certain linear relation.
متن کاملComplete Bethe Ansatz solution of the open spin-s XXZ chain with general integrable boundary terms
We consider the open spin-s XXZ quantum spin chain with N sites and general integrable boundary terms for generic values of the bulk anisotropy parameter, and for values of the boundary parameters which satisfy a certain constraint. We derive two sets of Bethe Ansatz equations, and find numerical evidence that together they give the complete set of (2s + 1)N eigenvalues of the transfer matrix. ...
متن کاملSolving the open XXZ spin chain with nondiagonal boundary terms at roots of unity
We consider the open XXZ quantum spin chain with nondiagonal boundary terms. For bulk anisotropy value η = iπ p+1 , p = 1 , 2 , . . ., we propose an exact (p+1)-order functional relation for the transfer matrix, which implies Bethe-Ansatz-like equations for the corresponding eigenvalues. The key observation is that the fused spin2 transfer matrix can be expressed in terms of a lower-spin transf...
متن کاملOn quantum group symmetry and Bethe ansatz for the asymmetric twin spin chain with integrable boundary
Motivated by a study of the crossing symmetry of the asymmetric twin or ‘gemini’ representation of the affine Hecke algebra we give a construction for crossing tensor space representations of ordinary Hecke algebras. These representations build solutions to the Yang– Baxter equation satisfying the crossing condition (that is, integrable quantum spin chains). We show that every crossing represen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of High Energy Physics
سال: 2009
ISSN: 1029-8479
DOI: 10.1088/1126-6708/2009/04/076